Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838466

RESUMO

In view of the current threat of antibiotic resistance, new antimicrobials with low risk of resistance development are demanded. Lcn972 is a lactococcal bacteriocin that inhibits septum formation by binding to the cell wall precursor lipid II in Lactococcus. It has a species-specific spectrum of activity, making Lcn972 an attractive template to develop or improve existing antibiotics. The aim of this work was to identify mutations present in the Lcn972-resistant clone Lactococcus cremoris D1-20, previously evolved from the sensitive strain L. cremoris MG1614. Whole-genome sequencing and comparison over the reference genome L. cremoris MG1363 identified several unexpected mutations in the parental strain MG1614, likely selected during in-house propagation. In the Lcn972R clone, two previously identified mutations were mapped and confirmed. Additionally, another transposition event deregulating cellobiose uptake was identified along with three point mutations of unknown consequences for Lcn972 resistance. Two new independent evolution experiments exposing L. cremoris MG1614 to Lcn972 revealed transposition of IS981 into the LLMG_RS12285 locus as the predominant mutation selected by Lcn972. This event occurs early during evolution and was found in 100% of the evolved clones, while other mutations were not selected. Therefore, activation of LLMG_RS12285 coding for a putative anti-ECF (extra-cytoplasmic function) sigma factor is regarded as the main Lcn972 resistance factor in L. cremoris MG1614.

2.
Anim Microbiome ; 4(1): 62, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494755

RESUMO

The porcine gut microbiome is central to animal health and growth as well as it can be structurally or functionally reshaped by dietary interventions. The gut microbiota composition in relation to Cyberlindnera jadinii yeast as a protein source in a weanling diet was studied previously. Also, there is a mounting body of knowledge regarding the porcine gut microbiome composition in response to the use of rapeseed (Brassica napus subsp. napus) meal, and faba beans (Vicia faba) as protein sources during the growing/finishing period. However, there is limited data on how the porcine gut microbiome respond to a combination of C. jadinii yeast in the weanling phase and rapeseed meal and faba beans in the growing/finishing phase. This work investigated how the porcine faecal microbiome was changing in response to a novel yeast diet with a high inclusion of yeast proteins (40% of crude protein) in a weanling diet followed by a diet based on rapeseed meal and faba beans during the growing/finishing period. The faecal microbiomes of the weanling pigs fed yeast were more diverse with higher relative abundance of Firmicutes over Bacteroidetes compared with those of soybean meal-based diet fed weanlings. Reduced numbers of Prevotella in the yeast fed faecal microbiomes remained a microbiome characteristic up until two weeks after the yeast diet was changed to the rapeseed/faba bean growing finishing diet. A number of differentially abundant bacterial phylotypes along with distinct co-occurrence patterns observed during the growing/finishing period indicated the presence of a "carry-over" effect of the yeast weanling diet onto the faecal microbiomes of the grower/finisher pigs.

3.
Chemosphere ; 252: 126484, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32199166

RESUMO

An increased risk of developing colorectal cancer has been associated with exposure to persistent organic pollutants (POPs) and alteration in the gut bacterial community. However, there is limited understanding about the impact of maternal exposure to POPs on colorectal cancer and gut microbiota. This study characterized the influence of exposure to a human relevant mixture of POPs during gestation and lactation on colorectal cancer, intestinal metabolite composition and microbiota in the A/J Min/+ mouse model. Surprisingly, the maternal POP exposure decreased colonic tumor burden, as shown by light microscopy and histopathological evaluation, indicating a restriction of colorectal carcinogenesis. 1H nuclear magnetic resonance spectroscopy-based metabolomic analysis identified alterations in the metabolism of amino acids, lipids, glycerophospholipids and energy in intestinal tissue. In addition, 16S rRNA sequencing of gut microbiota indicated that maternal exposure modified fecal bacterial composition. In conclusion, the results showed that early-life exposure to a mixture of POPs reduced colorectal cancer initiation and promotion, possibly through modulation of the microbial and biochemical environment. Further studies should focus on the development of colorectal cancer after combined maternal and dietary exposures to environmentally relevant low-dose POP mixtures.


Assuntos
Carcinógenos/metabolismo , Poluentes Ambientais/metabolismo , Animais , Carcinogênese , Carcinógenos/toxicidade , Neoplasias do Colo , Neoplasias Colorretais/induzido quimicamente , Poluentes Ambientais/toxicidade , Feminino , Microbioma Gastrointestinal/genética , Humanos , Lactação , Exposição Materna/estatística & dados numéricos , Metabolômica , Camundongos , Camundongos Endogâmicos , Microbiota , RNA Ribossômico 16S
4.
Anim Microbiome ; 2(1): 13, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33499966

RESUMO

BACKGROUND: Dietary yeast inclusions in a pig diet may drive changes both in gut bacterial composition and bacterial functional profile. This study investigated the effect of Cyberlindnera jadinii as a protein to replace 40% of the conventional proteins in a diet for weanling pigs on the microbiota in the small and large intestine, colonic short-chain fatty acid concentration, and colonic histopathology parameters. Seventy-two pigs weaned at 28 days of age were randomly assigned to either a control or a C. jadinii-based diet and followed for 2 weeks. RESULTS: Compared with the controls, higher numbers of cultivable lactic acid-producing bacteria in the small and large intestine were registered in the yeast group. Alpha and beta bacterial diversity were different between the diet groups with lower alpha-diversity and distinct bacterial composition in the large intestine in the yeast group compared with those of the controls. The large intestine microbiota in the yeast group had higher numbers of Prevotella, Mitsuokella and Selenomonas compared with those of the controls. The concentrations of colonic acetate and butyrate were higher in the controls compared with that of the yeast group. The colonic crypt depth was deeper in the control group. The gut histopathology of colonic tissues revealed no differences between the diets. The colonic crypt depth tended to be deeper with higher relative abundance of an unclassified Spirochetes, higher colonic butyrate concentration, and higher bacterial richness. The concentration of colonic butyrate was positively associated with the relative abundance of the Faecalibacterium prausnitzii, Dialister, and an unclassified amplicon of the Spirochaetaceae family in the colon. CONCLUSIONS: The replacement of the conventional proteins by proteins from Cyberlindnera jadinii in a weanling pig diet reshaped the large intestine microbiota structure. The novel yeast diet appeared to be selective for Lactobacillus spp., which may represent an added value resulting from using the sustainably produced yeast protein ingredient as an alternative to conventional protein ingredients in animal diets. The large intestine bacterial composition and their metabolites may be involved in an adaptive alteration of the colonic crypts without pathological consequences.

5.
Probiotics Antimicrob Proteins ; 12(3): 1218-1225, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31788767

RESUMO

Bacteriocins are antimicrobial peptides produced by bacteria to compete with other bacteria for nutrients and ecological niches. The antimicrobial effect of these peptides on the bacterial populations in the gut is likely dynamic as the survival of the microbes in this environment depends on both competition and cooperation. In this study, we evaluated four different bacteriocins from lactic acid bacteria (LAB): nisin, enterocin A (EntA), enterocin K1 (EntK1), and garvicin ML (GarML), which have different inhibition spectra and physicochemical properties. The bacteriocins were tested in vitro using fecal slurry batch cultures from infants. The abundances of some bacterial populations in the cultures were determined using quantitative PCR (qPCR) and the metabolic activity of the gut microbiota was assessed by measuring the production of short-chain fatty acids (SCFA) using gas chromatography. The effects of the bacteriocins correlated well with their antimicrobial spectra and the administered concentrations. Nisin and GarML, with broad antimicrobial spectra, shifted the abundance of several intestinal bacterial groups, while EntA and EntK1, with relative narrower inhibition spectra, showed no or little effect. Moreover, the results from the SCFA analysis were consistent with changes obtained in the bacterial composition. In particular, a reduction in acetate concentration was observed in the samples with low abundance of Bifidobacterium, which is a well-known acetate producer. The variability imposed on the intestinal bacterial populations by the different bacteriocins tested suggests that this type of antimicrobials have great potential to modulate the gut microbiota for medical purposes.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bacteriocinas/farmacologia , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillales/fisiologia , Humanos , Recém-Nascido
6.
Microb Ecol Health Dis ; 28(1): 1348886, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959178

RESUMO

The gut microbiota is considered an organ that co-develops with the host throughout its life. The composition and metabolic activities of the gut microbiota are subject to a complex interplay between the host genetics and environmental factors, such as lifestyle, diet, stress and antimicrobials. It is evident that certain prebiotics, and antimicrobials produced by lactic acid bacteria (LAB), can shape the composition of the gut microbiota and its metabolic activities to promote host health and/or prevent diseases. In this review, we aim to give an overview of the impact of prebiotic fibres, and bacteriocins from LAB, on the gut microbiota and its activities, which affect the physiology and health of the host. These represent two different mechanisms in modulating the gut microbiota, the first involving exploitative competition by which the growth of beneficial bacteria is promoted and the latter involving interference competition by which the growth of pathogens and other unwanted bacteria is prevented. For interference competition in the gut, bacteriocins offer special advantages over traditional antibiotics, in that they can be designed to act towards specific unwanted bacteria and other pathogens, without any remarkable collateral effects on beneficial microbes sharing the same niche.

7.
J Vis Exp ; (125)2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28784971

RESUMO

Very intriguing questions arise with our advancing knowledge on gut microbiota composition and the relationship with health, particularly relating to the factors that contribute to maintaining the population balance. However, there are limited available methodologies to evaluate these factors. Bacteriocins are antimicrobial peptides produced by many bacteria that may confer a competitive advantage for food acquisition and/or niche establishment. Many probiotic lactic acid bacteria (LAB) strains have great potential to promote human and animal health by preventing the growth of pathogens. They can also be used for immuno-modulation, as they produce bacteriocins. However, the antagonistic activity of bacteriocins is normally determined by laboratory bioassays under well-defined but over-simplified conditions compared to the complex gut environment in humans and animals, where bacteria face multifactorial influences from the host and hundreds of microbial species sharing the same niche. This work describes a complete and efficient procedure to assess the effect of a variety of bacteriocins with different target specificities in a murine system. Changes in the microbiota composition during the bacteriocin treatment are monitored using compositional 16S rDNA sequencing. Our approach uses both the bacteriocin producers and their isogenic non-bacteriocin-producing mutants, the latter giving the ability to distinguish bacteriocin-related from non-bacteriocin-related modifications of the microbiota. The fecal DNA extraction and 16S rDNA sequencing methods are consistent and, together with the bioinformatics, constitute a powerful procedure to find faint changes in the bacterial profiles and to establish correlations, in terms of cholesterol and triglyceride concentration, between bacterial populations and health markers. Our protocol is generic and can thus be used to study other compounds or nutrients with the potential to alter the host microbiota composition, either when studying toxicity or beneficial effects.


Assuntos
Bacteriocinas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Técnicas Microbiológicas/métodos , Animais , DNA Ribossômico , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos BALB C , Probióticos/farmacologia , RNA Ribossômico 16S
8.
PLoS One ; 11(10): e0164036, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695121

RESUMO

Production of bacteriocins is a potential probiotic feature of many lactic acid bacteria (LAB) as it can help prevent the growth of pathogens in gut environments. However, knowledge on bacteriocin producers in situ and their function in the gut of healthy animals is still limited. In this study, we investigated five bacteriocin-producing strains of LAB and their isogenic non-producing mutants for probiotic values. The LAB bacteriocins, sakacin A (SakA), pediocin PA-1 (PedPA-1), enterocins P, Q and L50 (enterocins), plantaricins EF and JK (plantaricins) and garvicin ML (GarML), are all class II bacteriocins, but they differ greatly from each other in terms of inhibition spectrum and physicochemical properties. The strains were supplemented to mice through drinking water and changes on the gut microbiota composition were interpreted using 16S rRNA gene analysis. In general, we observed that overall structure of the gut microbiota remained largely unaffected by the treatments. However, at lower taxonomic levels, some transient but advantageous changes were observed. Some potentially problematic bacteria were inhibited (e.g., Staphylococcus by enterocins, Enterococcaceae by GarML, and Clostridium by plantaricins) and the proportion of LAB was increased in the presence of SakA-, plantaricins- and GarML-producing bacteria. Moreover, the treatment with GarML-producing bacteria co-occurred with decreased triglyceride levels in the host mice. Taken together, our results indicate that several of these bacteriocin producers have potential probiotic properties at diverse levels as they promote favorable changes in the host without major disturbance in gut microbiota, which is important for normal gut functioning.


Assuntos
Antibiose , Fenômenos Fisiológicos Bacterianos , Bacteriocinas/metabolismo , Microbioma Gastrointestinal , Homeostase , Animais , Bacteriocinas/farmacologia , Biodiversidade , Biomarcadores , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metagenoma , Metagenômica , Camundongos , RNA Ribossômico 16S
9.
Microbiome ; 3: 16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25905018

RESUMO

BACKGROUND: Dietary fibers contribute to health and physiology primarily via the fermentative actions of the host's gut microbiome. Physicochemical properties such as solubility, fermentability, viscosity, and gel-forming ability differ among fiber types and are known to affect metabolism. However, few studies have focused on how they influence the gut microbiome and how these interactions influence host health. The aim of this study is to investigate how the gut microbiome of growing pigs responds to diets containing gel-forming alginate and fermentable resistant starch and to predict important interactions and functional changes within the microbiota. RESULTS: Nine growing pigs (3-month-old), divided into three groups, were fed with either a control, alginate-, or resistant starch-containing diet (CON, ALG, or RS), and fecal samples were collected over a 12-week period. SSU (small subunit) rDNA amplicon sequencing data was annotated to assess the gut microbiome, whereas comprehensive microarray polymer profiling (CoMPP) of digested material was employed to evaluate feed degradation. Gut microbiome structure variation was greatest in pigs fed with resistant starch, where notable changes included the decrease in alpha diversity and increase in relative abundance of Lachnospiraceae- and Ruminococcus-affiliated phylotypes. Imputed function was predicted to vary significantly in pigs fed with resistant starch and to a much lesser extent with alginate; however, the key pathways involving degradation of starch and other plant polysaccharides were predicted to be unaffected. The change in relative abundance levels of basal dietary components (plant cell wall polysaccharides and proteins) over time was also consistent irrespective of diet; however, correlations between the dietary components and phylotypes varied considerably in the different diets. CONCLUSIONS: Resistant starch-containing diet exhibited the strongest structural variation compared to the alginate-containing diet. This variation gave rise to a microbiome that contains phylotypes affiliated with metabolically reputable taxonomic lineages. Despite the significant microbiome structural shifts that occurred from resistant starch-containing diet, functional redundancy is seemingly apparent with respect to the microbiome's capacity to degrade starch and other dietary polysaccharides, one of the key stages in digestion.

10.
Colloids Surf B Biointerfaces ; 116: 612-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24262865

RESUMO

The electrospinning of nanofibers (NF) from cyclodextrin inclusion complexes (CD-IC) with an antibacterial agent (triclosan) was achieved without using any carrier polymeric matrix. Polymer-free triclosan/CD-IC NF were electrospun from highly concentrated (160% CD, w/w) aqueous triclosan/CD-IC suspension by using two types of chemically modified CD; hydroxypropyl-beta-cyclodextrin (HPßCD) and hydroxypropyl-gamma-cyclodextrin (HPγCD). The morphological characterization of the electrospun triclosan/CD-IC NF by SEM elucidated that the triclosan/HPßCD-IC NF and triclosan/HPγCD-IC NF were bead-free having average fiber diameter of 520 ± 250 nm and 1,100 ± 660 nm, respectively. The presence of triclosan and the formation of triclosan/CD-IC within the fiber structure were confirmed by (1)H-NMR, FTIR, XRD, DSC, and TGA studies. The initial 1:1 molar ratio of the triclosan:CD was kept for triclosan/HPßCD-IC NF after the electrospinning and whereas 0.7:1 molar ratio was observed for triclosan/HPγCD-IC NF and some uncomplexed triclosan was detected suggesting that the complexation efficiency of triclosan with HPγCD was lower than that of HPßCD. The antibacterial properties of triclosan/CD-IC NF were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. It was observed that triclosan/HPßCD-IC NF and triclosan/HPγCD-IC NF showed better antibacterial activity against both bacteria compared to uncomplexed pure triclosan.


Assuntos
Antibacterianos/farmacologia , Ciclodextrinas/farmacologia , Escherichia coli/efeitos dos fármacos , Nanofibras/química , Staphylococcus aureus/efeitos dos fármacos , Triclosan/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ciclodextrinas/química , Condutividade Elétrica , Eletrodos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Triclosan/química , Viscosidade
11.
Carbohydr Polym ; 99: 808-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24274573

RESUMO

One-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPßCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPßCD nanofibers. The PVA/Ag-NP and PVA/HPßCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPßCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Nanofibras/química , Álcool de Polivinil/química , Prata/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Antibacterianos/farmacologia , Técnicas Eletroquímicas , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Nanofibras/ultraestrutura , Oxirredução , Tamanho da Partícula , Prata/farmacologia , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
12.
J Agric Food Chem ; 61(16): 3901-8, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23590460

RESUMO

Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, ß-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas ß-CD and γ-CD successfully formed TR/CD-IC crystals, and the molar ratio of TR to CD was found to be 1:1. The structural and thermal characteristics of TR/CD-IC were investigated by (1)H NMR, FTIR, XRD, DSC, and TGA studies. Then, the encapsulation of TR/ß-CD-IC and TR/γ-CD-IC in PLA nanofibers was achieved. Electrospun PLA and PLA/TR nanofibers obtained for comparison were uniform, whereas the aggregates of TR/CD-IC crystals were present and distributed within the PLA fiber matrix as confirmed by SEM and XRD analyses. The antibacterial activity of these nanofibrous webs was investigated. The results indicated that PLA nanofibers incorporating TR/CD-IC showed better antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria compared to PLA nanofibers containing only TR without CD-IC. Electrospun nanofibrous webs incorporating TR/CD-IC may be applicable in active food packaging due to their very high surface area and nanoporous structure as well as efficient antibacterial property.


Assuntos
Antibacterianos/química , Ciclodextrinas/química , Embalagem de Alimentos/instrumentação , Ácido Láctico/química , Nanofibras/química , Polímeros/química , Triclosan/química , Embalagem de Alimentos/métodos , Microscopia Eletrônica de Varredura , Nanofibras/administração & dosagem , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...